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Abstract. We investigate some properties of the WKB series for arbitrary analytic potentials and
then specifically for potentials xN (N even), where more explicit formulae for the WKB terms are
derived. Our main new results are: (i) we find the explicit functional form for the general WKB
terms σ ′

k , where one has only to solve a general recursion relation for the rational coefficients;
(ii) we give a systematic algorithm for an essential simplification of the integrated WKB terms∮
σ ′
k dx that enter the energy eigenvalue equation; and (iii) we derive almost explicit formulae for

the WKB terms for the energy eigenvalues of the homogeneous power law potentials V (x) = xN ,
where N is even.

1. Introduction

Although at present the WKB theory for one-dimensional systems is very thoroughly developed
(see, e.g., Delabaere et al (1997), Balian et al (1979) and Voros (1983)) and its methods are very
important for many applications, there are only a few works where the problem of effective
calculation of the terms of WKB expansions is discussed. In this direction a pioneering
paper is by Bender et al (1977), where the authors investigated the structure of the terms of
WKB expansions and also applied the methods to compute the eigenvalues of the potential
V (x) = xN (N even positive integer). In our present paper we perform a further study of the
problem of the effective computation of WKB series begun in Bender et al (1977). We obtain
new recurrence formulae for WKB terms for arbitrary analytic potentials, and in particular
for the polynomial potential V (x) = xN . The known algorithms are very laborious, because
they involve operations of differentiation and collection of similar terms in polynomials, which
are extremely time consuming as the order increases, even when modern computer algebra
systems are used. In contrast, in computing them by means of our recurrence formulae one
performs only arithmetic operations with rational numbers, as we have explicit formulae for
the WKB terms, except for the numerical coefficients (exact rational numbers). We also derive
almost explicit formulae for the WKB terms for the energy eigenvalues of the homogeneous
power law potentials V (x) = xN , where N is even.

These results go substantially beyond the results of Bender et al (1977) and indeed it
should be emphasized that the main algebraic ideas behind our present work are due to certain
remarkable similarities between our present problems and those involved in calculating the
normal forms and Lyapunov focus quantities in the power law differential equations (of one
degree of freedom) and maps (see Romanovski (1993) and Romanovski and Rauh (1998)).
There are also some common features between the problem of reduction of the coefficients σ ′

k
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5094 M Robnik and V G Romanovski

of the WKB series and the problem of finding a basis of the ideal of Lyapunov focus quantities
(the so-called local 16th Hilbert problem, see Romanovski (1996)). Some introduction to the
WKB method can be found in Bender and Orszag (1978).

We consider the two-turning-point eigenvalue problem for the one-dimensional Schrö-
dinger equation[

−h̄2 d2

dx2
+ V (x)

]
ψ(x) = Eψ(x). (1)

We can always write the wavefunction as

ψ(x) = exp

{
1

h̄
σ (x)

}
(2)

where the phase σ(x) is a complex function that satisfies the differential equation

σ ′2(x) + h̄σ ′′(x) = (V (x)− E)
def= Q(x). (3)

The WKB expansion for the phase is

σ(x) =
∞∑
k=0

h̄kσk(x). (4)

Substituting (4) into (3) and comparing like powers of h̄ gives the recursion relation

σ ′2
0 = Q(x) σ ′

n = − 1

2σ ′
0

( n−1∑
k=1

σ ′
kσ

′
n−k + σ ′′

n−1

)
. (5)

Computing the first few functions σ ′
k by means of the recurrent formula we get

σ ′
0 = −

√
Q(x) σ ′

1 = −Q′(x)
4Q(x)

σ ′
2 = 5Q′(x)2 − 4Q(x)Q′′(x)

32Q(x)
5
2

(6)

σ ′
3 = −15Q′(x)3 + 18Q(x)Q′(x)Q′′(x)− 4Q(x)2Q(3)(x)

64Q(x)4 (7)

and

σ ′
4 = (1105Q′(x)4 − 1768Q(x)Q′(x)2

Q′′(x) + 448Q(x)2Q′(x)Q(3)(x)

+304Q(x)2Q′′(x)2 − 64Q(x)3Q(4)(x))/2048Q(x)
11
2 . (8)

For the analytical potential V (x) the following quantization condition is known (see Dunham
(1932), Fröman and Fröman (1977) and Fedoryuk (1983)):

1

2i

∮
γ

∞∑
k=0

h̄kσ ′
k(x) dx = πnqh̄ (9)

where nq � 0 is an integer number and γ is a complex contour enclosing the two turning
points on the real axis. This relation is an equation with respect to E and using it one can
find the asymptotics of the eigenvalues En(h̄) (see, e.g., Balian et al (1979), Fedoryuk (1983)
and references therein). In some cases the series (9) can be summed exactly (see Bender et al
(1977), Robnik and Salasnich (1997a, b), Romanovski and Robnik (1999a, b), Salasnich and
Sattin (1997)).

The zero-order term of the WKB expansion is given by

1

2i

∮
γ

dσ0 =
∫

dx
√
E − V (x) (10)
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where the first odd term is
h̄

2i

∮
γ

dσ1 = −πh̄

2
(11)

and to find the higher-order terms we need to compute the functions σ ′
k using the recursion

relation (5). We note that the odd-order terms (except the first order for σ ′
1) yield integrals that

vanish exactly, because, as follows from the results of Fröman (1966), the functions σ ′
2k+1 are

total derivatives.

2. An algorithm for computing σ′
k

We will look for a general formula for the functions σ ′
k . As is known, one of the most powerful

tools for the investigation of recurrence relations is the method of generating functions (see,
e.g., Graham et al (1994)). The most widely used in combinatorics generating functions are the
ones with a single variable, for example, a generating function for the sequence {g0, g1, g2, . . .}
is the formal series

G(z) =
∑
n�0

gnz
n. (12)

However, we can also consider a sequence, where every term has only a finite number of
indices, but the total number of indices is unbounded (e.g., g(γ1), g(γ1,γ2), g(γ1,γ3,...,γn), . . .) with
the generating function

G(z1, z2, . . .) =
∑
γ∈M

gγ z̄
γ (13)

where M = ∪∞
k=1N

k , N is the set of non-negative integers, z̄ = (z1, . . . , zs) and z̄γ =
z
γ1

1 , . . . , z
γs
s . Thus in this case G(z1, z2, . . .) is an element of the ring of formal power series in

the infinite number of variables, z1, z2, . . . . We can consider M as an infinitely dimensional
vector space consisting of vectors with only a finite number of coordinates different from
zero. If the last non-zero coordinate of ν ∈ M is νl then we write ν = (ν1, . . . , νl) instead of
ν = (ν1, . . . , νl, 0, 0, . . .).

We now apply the method of generating functions to computing the WKB expansion for
the phase. Define the map L : M → N by

L(ν) = 1 · ν1 + 2 · ν2 + · · · + l · νl (14)

and denote by L(ν) = m the equation

L(ν) = 1 · ν1 + 2 · ν2 + · · · + m · νm = m (15)

with m ∈ N , ν ∈ M . For a vector ν = (ν1, . . . , νl) ∈ M we denote Q(ν) =
(Q′)ν1(Q′′)ν2 · · · (Q(l))νl , |ν| = ν1 + · · · + νl and let ν(i) (i = 1, . . . , l − 1) be the vector
(ν1, . . . , νi + 1, νi+1 − 1, . . . , νl). We will show that the functions σ ′

m are of the form

σ ′
m =

∑
ν:L(ν)=m

UνQ
m−|ν|Q(ν)

Q
3m−1

2

(16)

where the coefficients Uν satisfy the recurrence relation

Uν = 1

2

∑
µ,θ =0,µ+θ=ν

UµUθ +
(4 − L(ν)− 2|ν|)U(ν1−1,ν2,...,νl )

4
+

l−1∑
i=1

(νi + 1)Uν(i)

2
(17)

with U0 = −1 and we put Uα = 0 if, among the coordinates of the vector α, there is a negative
one.
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It should be mentioned that the complexity of functions σ ′
n increases rapidly with the order

n, and it is remarkable that applying our almost explicit formulae (16) and (17) we can go much
further than by using the well known recursion relation (5) (see the appendix).

We remind ourselves that a partition of the integer number m is a representation of m as
a sum of positive numbers, for example, for m = 4:

4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1. (18)

The number of partitions of m is denoted by p(m), in the example above p(4) = 5 (there
exists a theory and a formula for p(m); see, e.g., Andrews (1976)). It is obvious that there is
a one-to-one correspondence between the set of all partitions of m and the set of all solutions
ν of the equation (15), L(ν) = m. Therefore as a corollary of formula (16) we find that the
number of terms of the function σ ′

k cannot exceed p(m). This fact was observed for the first
time by Bender et al (1977).

We prove the formulae (16) and (17) by induction onm. Indeed, form = 1, 2 the statement
holds. Let us suppose that it is true for all m < k. Then for m = k we get

σ ′
i σ

′
k−i

2σ ′
0

=
∑

θ,µ:L(θ)=i,L(µ)=k−i
−UθUµQ

k−|µ|−|θ |Q(µ+θ)

2Q
3k−1

2

. (19)

Obviously,

L(θ) = i L(µ) = k − i ⇒ L(θ + µ) = k (20)

and here we assume that the dimensions of vectors θ and µ are the same. If not, we simply
extend the dimension of the smaller one by putting zeros for the excess coordinates. On the
other hand, taking into account that all coefficients of the map (14) are positive, it is easy to
verify that

L(θ + µ) = k ⇒ L(θ) = j L(µ) = k − j 0 � j � k (21)

(this property is the crucial one for the method presented). Thus (19)–(21) yield

k−1∑
i=1

σ ′
i σ

′
k−i

2σ ′
0

=
∑

θ,µ:L(θ+µ)=k
−UθUµQ

k−|µ|−|θ |Q(µ+θ)

2Q
3k−1

2

(22)

i.e., we get an expression of the form (16).
For the last term of the recurrence formula (5) we get

σ ′′
k−1

2σ ′
0

=
∑

µ:L(µ)=k−1

−Uµ

[
(2 − k − 2|µ|)Qk−|µ|−1Q(µ1+1,µ2,...,µk−1)

4Q
3k−1

2

+
Qk−|µ|−1(Q(µ))′

2Q
3k−3

2

]
.

(23)

Note that for the vector µ = (µ1, . . . , µk−1, 0)

[Q(µ)]′ =
k−1∑
i=1

µiQ
(µ̂(i)) (24)

where we denote by µ̂(i) (i = 1, . . . , k − 1) the vector (µ1, . . . , µi − 1, µi+1 + 1, . . . , µk)

(i = 1, . . . , k − 1). It is readily seen that L(µ̂(i)) = L(µ) + 1 = k; therefore, formulae (5)
and (22)–(24) show that (16) and (17) hold.

Using the recurrence relation (17) we can obtain the differential equation for the generating
function of the sequence Uν :

U(z̄) = U(z1, . . .) =
∑
ν∈M

Uνz̄
ν. (25)



Some properties of WKB series 5097

Let us rewrite (17) in the form

U(ν1,...,νl ) = 1
2

∑
µ,θ =0,µ+θ=ν

UµUθ + U(ν1−1,ν2,...,νl ) − 3
4ν1U(ν1−1,ν2,...,νl )

−1

4

l∑
i=2

(i + 2)νiU(ν1−1,ν2,...,νl ) +
l−1∑
i=1

(νi + 1)Uν(i)

2
− [ν = 0] (26)

where [α = β] denotes the function, which equals 1 if α = β and 0 otherwise.
Using the obvious properties of generating functions (see, e.g., Graham et al (1994)) we

get from (26)

U = 1

2
(U + 1)2 + z1U − 3

4
z1(z1U)

′
z1

−
l∑

i=2

i + 2

4
z1ziU

′
zi

+
1

2

l−1∑
i=1

zi+1U
′
zi

− 1. (27)

It means if we fix any integer l and, therefore, the variables z1, . . . , zl , then the function

Û (z1, . . . , zl) = U(z1, . . . , zl, 0, 0, . . .) (28)

is the solution of equation (27) with the initial conditions

Û (0) = −1 Û ′
zi
(0) = − 1

2i+1
(29)

(we get the initial conditions from (17) taking into account that U(0,...,0,1) = − 1
2i+1 for the

vectors with only the ith coordinate different from zero). So, the coefficients Uν that enter
the functions σ ′

k (16) are precisely the coefficients of the Taylor expansion of the function Û
defined by the differential equation (27) with the initial conditions (29).

Coefficients of the form U(n,0,...,0)
def= Un depend on the coefficients of the same form.

Therefore we get from (27) that the function U(z) = ∑∞
n=0 Unz

n satisfies the differential
equation

U = 1
2 (U + 1)2 + zU − 3

4z(zU)
′
z − 1 (30)

which is the Riccati equation

3z2U ′
z − 2U 2 − zU + 2 = 0. (31)

Note that as an immediate corollary of formula (16) we get that for the harmonic oscillator,
i.e. when Q = x2 − E, the WKB series (9) terminates after the first two terms, namely∮

γ

dσk = 0 (32)

for all k � 2. Indeed, in this case (16) yields

σ ′
m =

[m/2]∑
i=0

U(m−2i,i)2m−ixm−2i

√
x2 − E

3m−1−2i (33)

where [m/2] stands for the integer part of m/2.
It is obvious

Res∞
xm−2i

√
x2 − E

3m−1−2i = 0 (34)

for all m > 1. Therefore (32) takes place.
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3. An algorithm for the simplification of the functions dσk

It was pointed out by Bender et al (1977) that the functions dσk can be dramatically simplified
by adding and subtracting total derivatives (obviously, such an operation does not change the
integrals (9)). They also carried out numerical experiments to obtain different simplifications
of these functions. It is easily seen that formula (16) provides an effective way to reduce the
number of terms in the expressions for the functions dσk .

We will look for a function of the form

Pk−1 =
∑

µ:L(µ)=k−1

WµQ
k−1−|µ|Q(µ)

Q
3k−3

2

(35)

where Wµ are to be determined, such that

d

dx
Pk−1 = σ ′

k. (36)

If equation (35) has a solution, then σ ′
k is a total derivative of the function Pk−1 and then the

contour integral
∮

dσk vanishes. However, if (35) has no solution, we can still use it in order
to eliminate (subtract) as many terms as possible in the expression dσk , which is then replaced
by dσ̂k (see equation (38)).

By comparing coefficients of Qk−|ν|Q(ν)

Q
3k−1

2
, in both parts of (36) we get the system of linear

equations of unknown variables Wµ:

3 − L(ν)− 2|ν|
2

W(ν1−1,ν2,...,νl ) +
l−1∑
i=1

(νi + 1)Wν(i) = Uν (37)

where ν = (ν1, . . . , νl) runs through the whole set of solutions of equation L(ν) = k and Uν

are defined by the recurrence relations (16) and (17). Thus to simplify the function dσk one
can use the system (37) of p(k) equations in p(k − 1) variables Wµ.

Let us denote by p̃(k) the number of partitions of kwhich contain at least one 1. Obviously,
p(k) = p̃(k+1). It appears that the optimal strategy to simplify σ ′

k is as follows. In system (37),
where L(ν) = k for Uν on the right-hand side, we consider the equations with ν such that
ν1 = 0. There are p̃(k) = p(k − 1) such equations and, according to (35), we have exactly
p(k − 1) variables Wµ. It turns out that we can always write the systems with Uν such that
ν1 = 0 in the triangular form (like system (39) below). To see this we set the following
order on vectors of M: we say that ν < µ if the first nonzero entry from the left in µ − ν is
positive (this order is known in computational algebra as the lexicographic one). Then if we
write down the equations of system (37), corresponding to Uν(1) , Uν(2) , . . . in decreasing order
ν(1) > ν(2), . . . and the variables Wµ in these equations also in decreasing order then we find
that the matrix corresponding to the firstp(k−1) equations is the triangularp(k−1)×p(k−1)
matrix (because ν(i) > (ν1 − 1, ν2, . . . , νl) for 1 � i � l − 1). We denote this triangular
p(k − 1) × p(k − 1) matrix by B and the whole system (37) by A · w = u, where w is the
ordered vector of variables Wµ, u is the ordered vector of Uν and A is the matrix of the linear
system (37). Let u1 be the p(k − 1) vector such that its coordinates coincide with the first
p(k − 1) coordinates of the vector u. The diagonal elements of the matrix B are equal to
(3 − L(ν)− 2|ν|)/2 and, hence, are different from zero. Therefore the system B ·w = u1 has
the solution w∗ and using the vector u− A · w∗ we obtain the simplified function

σ̂ ′
k(x) = σ ′

k(x)− d

dx
Pk−1 (38)

such that
∮
γ

dσk = ∮
γ

dσ̂k . Hence, we see that after the simplification dσ2n contains at most
p(2n)− p(2n− 1) terms.
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For example, to simplify dσ4 we write down the corresponding system (37) and get

U4 = − 9
2 W3

U(2,1) = 3W3 − 7
2 W(1,1)

U(1,0,1) = W(1,1) − 5
2 W(0,0,1)

U(0,2) = W(1,1)

U(0,0,0,1) = W(0,0,1)

(39)

where U4 = 1105/2048, U(2,1) = −1768/2048, U(0,2) = 304/2048, U(1,0,1) = 448/2048,
U(0,0,0,1) = −64/2048. For this case w = (W3,W(1,1),W(0,0,1))

�, u = (U4, U(2,1), U(1,0,1),
U(0,2), U(0,0,0,1))

�, u1 = (U4, U(2,1), U(1,0,1))
�. Solving the system B · w = u1, which in this

case is the system of the first three equations of (37) (note that the matrix, corresponding to
these equations, is the triangular one), we find

W3 = − 1105
9216 W(1,1) = 221

1536 W(0,0,1) = − 23
768 . (40)

Hence

u− A · w∗ = (0, 0, 0, 7
1536 ,− 2

1536 ) (41)

where A is the matrix of system (39). It means that

σ̂ ′
4 = σ ′

4 − d

dx
P3 = 7Q′′(x)2 − 2Q(x)Q(4)(x)

1536Q(x)7/2
(42)

in accordance with Bender et al (1977).
To end this section we show that in some cases we can replace calculation of the contour

integral by computing a Riemann integral, namely we shall show that formula (44) below
applies.

First we note that taking into account that Q = V (x)−E we can write formula (16), for
even m, in the form

σ ′
m =

∑
ν:L(ν)=m

2
m
2 −1+|ν| i

(m− 3 + 2|ν|)!!
∂

m
2 −1+|ν|

∂E
m
2 −1+|ν|

UνV
(ν)

√
E − V

. (43)

Let us now suppose thatQ = V (x)−E, whereV (x) is an analytic function with one minimum
and V ′(x) = 0, if x = 0. We will show that∮

dσm = 2
∑

ν:L(ν)=m

2
m
2 −1+|ν| i

(m− 3 + 2|ν|)!!
∂

m
2 −1+|ν|

∂E
m
2 −1+|ν|

∫ x2

x1

UνV
(ν)

√
E − V

dx (44)

where V (x1) = V (x2) = E0, x1 < x2. Taking into account (43) it is easy to see that to
prove (44) it is sufficient to show that∮

γ

∂
m
2 −1+|ν|

∂E
m
2 −1+|ν|

V (ν)

√
E − V

dx = 2
∂

m
2 −1+|ν|

∂E
m
2 −1+|ν|

∫ x2

x1

V (ν)

√
E − V

dx. (45)

Note that, due to the theorem on differentiation upon a parameter (see, e.g., Sidorov et al
(1976)), if

F(E) =
∮
γ

f (x,E) dx (46)

and

(1) γ is a finite piecewise-smooth curve;
(2) the function f (x,E) is continuous with respect to (x, E) for x ∈ γ,E ∈ D, where D is

a domain of the complex plane;



5100 M Robnik and V G Romanovski

(3) for every fixed x ∈ γ the function f (x,E) is analytic upon E in D, then F(E) is analytic
in D and

F ′(E) =
∮
γ

∂f (x,E)

∂E
dx (47)

for E ∈ D.
Let us cut the complex plane between the turning points x1 and x2 to get a single-valued

function and fix the contour (x1 + ρ, x2 − ρ) ∪ c1 ∪ (x2 − ρ, x1 + ρ) ∪ c2, where ρ is small,
c1, c2 are circles: c1 = x2 + ρeit , c2 = x1 + ρeit and t ∈ [0, 2π ]. Then the conditions (1)–(3)
are satisfied (with D being a small neighbourhood of E0). Therefore∮
γ

∂
m
2 −1+|ν|

∂E
m
2 −1+|ν|

V (ν)

√
E − V

dx = ∂
m
2 −1+|ν|

∂E
m
2 −1+|ν|

∮
γ

V (ν)

√
E − V

dx

= ∂
m
2 −1+|ν|

∂E
m
2 −1+|ν|

(
2

∫ x0−ρ

−x0+ρ

V (ν)

√
E − V

dx +
∮
c1

V (ν)

√
E − V

dx +
∮
c2

V (ν)

√
E − V

dx

)
.

(48)

Let us denote

g(E) =
∮
c1

V (ν)

√
E − V

dx. (49)

Due to the theorem mentioned above g(E) is analytic in a neighbourhood of E0. Therefore

g(E) ≈ g(E0) + g′(E0)(E − E0). (50)

Noting that

|g(E0)| =
∣∣∣∣
∮
c1

V (ν)

√
E0 − V

dx

∣∣∣∣ =
∣∣∣∣
∮
c1

V (ν)

√
V ′(x1)(x − x1) + · · · dx

∣∣∣∣ < const ρ1/2 (51)

we obtain that g(E) → 0 when ρ → 0, E → E0. It means that formula (45) indeed holds.
This formula has been found useful for computing the WKB series for the Coulomb potential
and the potential V (x) = U0/cos2(αx) (Robnik and Salasnich 1997a, b).

4. Potentials of the form V (x) = xN

In recent decades many studies have been devoted to the investigation of the semiclassical
expansions for potentials of the form V (x) = xN and important results have been achieved
(see, e.g., Balian et al (1979), Voros (1983) and references therein).

One of the basic formulae for these potentials was obtained by Bender et al (1977) and is
as follows:

π(nq + 1
2 ) = E1/N+1/2

∞∑
n=0

E−n(1+2/N)an(N) (52)

where N is an even integer number,

an(N) = (−1)n21−n√π4(1 + 1−2n
N

)Pn(N)

(2 + 2n)!4( 3−2n
2 + 1−2n

N
)

(53)

andPn(N) are polynomials of the variableN with integer coefficients, in particularP0(N) = 1,

and therefore a0(N) =
√
π4(1+ 1

N
)

4( 3
2 + 1

N
)

. The first eight polynomials Pn(N) were computed using

the MACSYMA computer algebra program by Bender et al (1977) for the general potential
V (x) = xN and, as was mentioned, the computation of the eighth polynomial has already faced
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difficulties. When N is a fixed numerical integer number then, instead of the polynomials an,
we have integers. The special case of the quartic oscillator (N = 4) has been investigated by
Balian, Parisi, Voros and others. In this case the expression of the type (52) is written (Balian
et al 1979) in the form

2π(nq + 1
2 )h̄ =

∞∑
n=0

bnσ
1−2nh̄2n (54)

where

σ = E3/4B( 3
2 ,

1
4 ) (55)

is the classical action around the closed orbit of energyE (hereB(x, y) is the beta function) and
bn in this case are rational numbers. As is reported by Balian et al (1979) using the REDUCE
language they were able to compute the first 17 coefficients bn. Then they had to switch to
ordinary numerical computation and computed bn up to n = 53 (in Voros (1983) the results of
computation up to n = 60 are presented).

It was mentioned in Balian et al (1979) and Bender et al (1977) that the authors do not
know any closed form or simple law for the coefficients an(N) and bn. In this section we
partially answer this question. Although we also were not able to find any closed form for the
functions an (or numbers bn) we obtain a simple recurrence formula, where only operations
of summation and multiplication of rational numbers are involved, whereas using the usual
method of the above-mentioned papers one needs first to compute rational functions of the form
f (x,

√
E − xN) and then evaluate contour integrals. We carried out computer experiments

and found out that using our algorithm with Mathematica 4.0 on a PC with 128 MB RAM we
were able to compute in closed arithmetic form the coefficients bn at least up to n = 190 for
the quartic potential (see also the appendix).

It can be proven (Robnik and Romanovski 2000) by induction using the recursion
relation (5) that for the potential V (x) = xN the coefficients σ ′

k (k � 1) of the WKB expansion
have the form

σ ′
k = − (−i)3k−1x−k+N

(E − xN)
3k−1

2

k−1∑
j=0

Ak−j−1,jE
k−j−1xjN (56)

where we choose
√
E − xn = i

√
xn − E, and the coefficients Ak−j−1,j of the monomials

Ek−j−1xjN are computed according to the recurrence formula

As,l = 1
2

s∑
i=0

l−1∑
j=0

Ai,jAs−i,l−1−j

+
l(2 + N) + (2 + 3N)s −N

4
As,l−1 +

(N − 1)l + N − s

2
As−1,l . (57)

with A0,0 = N
4 and

Aα,β = 0 if α < 0 or β < 0. (58)

Using equation (57) we can get the differential equation for the generating function of the
coefficients As,l , and in the special case As,0 one can find the explicit formula (Robnik and
Romanovski 2000)

As,0 = N !

2s+2(N − s − 1)!
. (59)

For even k, (k ↔ 2k) we can write formula (56) in the form

σ ′
2k =

2k−1∑
j=0

i23k

(6k − 3)!!
A2k−j−1,jE

2k−j−1x−2k+(j+1)N ∂3k

∂E3k
(E − xN)1/2. (60)
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As above we can replace the integration on a contour with the integration between turning
points. Then, taking into account that∫ a

0
xα−1(aθ − xθ )β−1 dx = aθ(β−1)+α

θ
B

(α
θ
, β

)
(61)

where α, θ,Re α,Re β > 0, and B is the beta function, and noting that

4( 3
2 + s + 1−2k

N
+ 1)

4( 3
2 + s + 1−2k

N
− 3k)

=
(

3

2
+ s +

1 − 2k

N

)

×
(

3

2
+ s +

1 − 2k

N
− 1

)
· · ·

(
3

2
+ s +

1 − 2k

N
− 3k

)
(62)

we get from (60)∮
γ

dσ2k = 2
∫ E1/n

−E1/n
dσ2k

= 23k+1i
√
π

(6k − 3)!!N
E

1
2 + 1

N

2k−1∑
s=0

A2k−s−1,sE
− 2k

N
−k 4( 1−2k

N
+ s + 1)

4( 3
2 + s + 1 − 3k + 1−2k

N
)

(63)

and using the equality 4(1 + z) = z4(z) we finally obtain the coefficients of the WKB
expansion:∮
γ

σ ′
2k dx = i23k+1√π

(6k − 3)!!N
E

1
2 + 1

N
− 2k

N
−k 4( 1−2k

N
+ 1)

4( 3−2k
2 + 1−2k

N
)

×
(
A2k−1,0

2k−1∏
s=1

(
3 − 2k

2
+

1 − 2k

N
− s

)
+

2k−1∑
i=1

A2k−i−1,i

i∏
s=1

(
s +

1 − 2k

N

)

×
2k−i−1∏
s=1

(
3 − 2k

2
+

1 − 2k

N
− s

))
(64)

where k � 1 and A2k−i−1,i are computed according to (57) and
∮
γ

σ ′
0 dx = 2iE

1
2 + 1

N

√
π4(1 + 1

N
)

4( 3
2 + 1

N
)

. (65)

5. Conclusions

To conclude, in this paper we have investigated the WKB approximations as a series for
arbitrary analytic potentials. In particular, we obtain effective algorithms to compute and
reduce the terms of these series. In computing by means of these formulae we manipulate
only with numbers and do not need to collect similar terms of a polynomial, which we must do
otherwise when we use just the recursion formula (5). Application of the formulae obtained
along with the reduction formula (37) considerably simplifies calculations, especially if we
need to compute higher-order terms. We also derive simple formulae for the WKB terms for
the energy eigenvalues of the polynomial potentials V (x) = xN , where N is even.
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Table A.1. (a) The order n of the coefficient σ ′
n, (b) the number of terms in the coefficient σ ′

n

(= p(n)), (c) CPU time in seconds for computing σ ′
n by means of formula (5), (d) CPU time for

computing σ ′
n using formulae (16) and (17).

(a) (b) (c) (d) (a) (b) (c) (d)

10 42 0.47 0.54 30 5 604 18 542 1 402
15 176 5.7 5.2 34 12 310 114 219 4 981
20 627 83 41 35 14 883 — 6 733
25 1958 1509 256 40 37 338 — 29 940

Table A.2. V (x) = x4.

n An

53 0.994 978 900 682 695 793 998 335 252 220 4201
54 −0.995 073 373 044 872 143 603 833 247 793 0891
55 0.995 164 356 634 546 100 730 933 541 912 3495
56 −0.995 252 041 172 171 612 549 261 251 302 2471
57 0.995 336 602 869 245 232 422 036 639 479 6240
58 −0.995 418 205 609 461 232 694 905 932 439 4196
59 0.995 497 002 008 086 630 872 969 891 605 0341
60 −0.995 573 134 363 955 136 819 952 539 720 4894

VR acknowledges the support of the work by the grant of the Ministry of Science and
Technology of the Republic of Slovenia and the Abdus Salam ICTP (Trieste) Joint Programme
and also the support of the Foundation of Fundamental Research of the Republic of Belarus.

Appendix

Here we present the results of computer experiments which we carried out with Mathematica
4.0 on our PC with a 450 MHz processor and 128 MB RAM to compare the efficiency of our
algorithms based on equations (16), (17), (57) and (64) with traditional ones.

To compute σ ′
n by Mathematica using formula (5) one can just use it in the form presented

in the text, but for computing by means of formulae (16) and (17) a procedure has to be written.
In the case of the potential V (x) = x4 for computing

∮
σ ′

2n dx one can use formulae (57)
and (64) precisely in the form presented in this paper, but it is a necessary preliminary to define
A−1,i = Ai,−1 = 0.

In Voros (1983) the table of results of numerical calculations of the numbers

An = 2− 3
2 −nπbn csc( (3−6n)π

4 )

4(2n− 1)

(which should not be confused with our As,l and where the numbers bn are defined in
equation (54), with an estimated accuracy of 34 digits) are presented and it is mentioned there
that the accuracy is not guaranteed for n close to 60. Indeed, we found perfect correspondence
with the table of Voros (1983) up to n = 52. However, for larger n there is disagreement with
our calculations, presented in table 2 (digits which differ from those obtained by Voros (1983)
are underlined). It should be emphasized that here we calculate An in the exact arithmetic
form, which includes rational numbers and the gamma function, but show here the numerical
results just for the purpose of comparing them with those of Voros (1983).

We computed the coefficients bn in exact arithmetic form according to formulae (57) and



5104 M Robnik and V G Romanovski

(64) up to n = 190 and it took 143 555 s CPU time to do so. It was possible to continue
computations according to the memory capacity. However, the computations became too time
consuming. As is reported by Balian et al (1979) using the REDUCE language they were able
to go up to n = 16.
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